Nanofabulous Seminar: A new imaging modality in nanomaterials and life sciences
Engineered or complex particles found in nano-electronics, photonic materials, and nano-sensors, etc. have experienced a rapid growth in research interest and application over the past two decades. Similarly, the interface between nanomaterials and biology has also grown rapidly. These outcomes are in part due to improving techniques to fabricate materials and biomaterials, from both top-down and bottom-up approaches, even at scale.
The characterisation needs for such materials leans heavily on existing microscopy or metrology tools that often balance resolution against the time, expense and complexity of measurement workflows. In addition, as objects get small, the methods become more specialised.
Motivated by the need to visualize complex particles and objects in engineered materials and dynamic processes in life sciences, this talk will focus on the operating principles of Resonance Imaging Microscopy (RIM). RIM is a new imaging modality to provide simple and easy characterisation of objects with nearly any shape and composition, ranging in size from hundreds of microns to tens of nanometres. RIM is a multi-source evanescent field scattering technique that enables high-speed, non-destructive, label and stain-free imaging in real time (up to hundreds of FPS) using visible light.
For particle metrology applications, we will present both direct and statistical results validating the fidelity of geometric measurements for a selection of spherical calibration particles with radii spanning four orders of magnitude. We will showcase more complex materials including nanorods and materials with complex internal structures. In life sciences we will show results of multi-modal characterisation studies that demonstrate how RIM is able to elucidate the internal structure of, and relationship between, untagged cells and bacteria. We will showcase how RIM can be used to visualise a range of other biological materials, both static and dynamic in nature. All achieved without the need of fluorescent proteins, dyes or conjugated antibodies or risks from photobleaching when examined using traditional laser-based microscopy systems.
Prof Raymond R. Dagastine
Department of Chemical Engineering, The University of Melbourne, VIC 3010, Australia
Tiny Bright Things, Carlton Victoria 3053, Australia
11:00am, 15/08/2024
Melbourne Centre for Nanofabrication
151 Wellington Road, Clayton, 3168
Zoom link: click here
Meeting ID: 858 5837 9980 and passcode:873578
Click here for more information
Nanofabulous Seminar: Neuromorphic biomaterials for cell interfacing
In the field of organic neuroelectronics, the use of organic polymers shows promising results for the application in biological interfaces, because of their biocompatibility and mixed ionic and electrical conduction. These devices were shown to have neuromorphic properties emulating the synaptic plasticity of biological neuronal networks. Furthermore, they exhibit the ability to be integrated with cells and show response to neurotransmitters. However, they do not exhibit the 2.5D/3D features, characteristic of neuronal cells.
We identified different geometries for the structures that resembles dendritic spines and whole neuronal morphology made of soft and rigid composition. These have been produced via two photon polymerization and electrodeposition of PEDOT-based blends. In particular, thin shapes spines that can initiate contacts with presynaptic terminals, crucial in the early stages of spinogenesis; mushroom shapes that result from the plastic and dynamic reshaping of neuronal circuits during synaptic development; and stubby forms.
Our results show that microelectrodes and in general surface topography can impact directionality and influence neural network remodeling on bioelectronic devices, particularly affecting the growth cone phase, causing a shift from pausing to a resting state. Importantly, we have demonstrated that the growth cone rate changes in response to different pitch configurations. Our research has revealed that biomimetic topographical cues can quickly affect membrane adhesion proteins and enhance efficiency, as shown through the 3D reconstruction integrated into an electrical equivalent model. Looking toward future applications in controlling signal dissipation, this work has the potential to improve the recording of electrogenic cells towards seamless recognition and integration of artificial neuronal electrodes into biological neuronal networks in vitro and in vivo.
Prof Francesca Santoro
Institute of Biological Information Processing IBI-3, Forschungszentrum Juelich, Germany
Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Germany
Tissue Electronics Lab, Italian Institute of Technology, 80125, Italy
11:00am, 01/08/2024
Melbourne Centre for Nanofabrication
151 Wellington Road, Clayton, 3168
Zoom link: click here
Meeting ID: 870 7845 6436 and passcode: 394942